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Abstract

Mathematical models can help predict the effectiveness of control measures
on the spread of HIV and other sexually transmitted diseases by reducing the
uncertainty in assessing the impact of intervention strategies such as random
screening and contact tracing. Even though contact tracing is one of the most
effective methods used for controlling treatable sexually transmitted diseases,
it is still a controversial strategy for controlling HIV because of cost and confi-
dentiality issues. To help estimate the effectiveness of these control measures,

we formulate two models with random screening and contact tracing based on
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the differential infectivity model and the staged-progression model. We derive
formulas for the reproductive numbers and the endemic equilibria and com-
pare the impact that random screening and contact tracing have in slowing the
epidemic in the two models. In the differential infectivity model the infected
population is divided into groups according to their infectiousness, and HIV is
largely spread by a small, highly infectious, group of superspreaders. In this
model contact tracing is an effective approach to identifying the superspreaders
and has a large effect in slowing the epidemic. In the staged-progression model
every infected individual goes through a series of infection stages and the virus is
primarily spread by individuals in an initial highly infectious stage or in the late
stages of the disease. In this model contact tracing is only slightly more effec-
tive than random screening. Thus the effectiveness of the intervention strategy

strongly depends on the underlying etiology of the disease transmission.

1 Introduction

Mathematical models based on the underlying transmission mechanisms of the disease
can help the medical/scientific community understand and anticipate the spread of an
epidemic and evaluate the potential effectiveness of different approaches for bringing
an epidemic under control. Models can be used to improve our understanding of the
essential relationships between the social and biological mechanisms that influence
the spread of a disease. The relative influence of various factors on the spread of
the epidemic, as well as the sensitivity to parameter variation, can be ascertained.
Because the transmission dynamics form a complex nonlinear dynamical system, the
behavior of the epidemic is a highly nonlinear function of the parameter values and
levels of intervention strategies. This at times may even lead to changes in infection
spread that are counter to both intuition and simple extrapolated predictions. We
can use the knowledge gained from studying models to help set priorities in research,
saving time, resources, and lives.

Screening is one of the most common strategies used to control the spread of
HIV infection. State health services provide anonymous or confidential screening to

individuals who come in on a voluntary basis, perhaps because they believe they may
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have been exposed to HIV by a particular behavior, or they are part of a higher risk
group. Infected individuals are identified through the testing of all blood donations
or as a regular part of a blood test, and pregnant women are often screened for HIV
infection. Models can be used to study the impact of such screening programs. They
can also be applied to study more costly contact tracing programs.

Contact tracing, also known as “partner notification by provider referral” is one
of the most effective strategies for controlling treatable sexually transmitted diseases
(STDs) such as syphilis and gonhorrhea. These programs ask infected individuals
to identify other people whom they may have infected or been infected by. Trained
personnel then attempt to contact the named partners, inform them that they had an
infected partner, educate them, and provide them with opportunities to be themselves
tested for the infection. If they are infected, they can begin treatment and stop
unknowingly spreading infection.

Although contact tracing has been used for years as a method for controlling
curable STDs, and has been very effective for them, it remains controversial and hotly-
debated as a strategy for controlling HIV. The advantages of identifying partners of
those infected with HIV are not as clear as they are with easily treated infections,
but the gravity of HIV infection and the epidemic itself, cause many to argue that it
needs to be done.

Some of the reasons people argue against contact tracing are confidentiality issues,
the cost of the program, and the likelihood that fewer people will come in for testing.
Some specialists in the field argue that the cost and the risks of putting people
at serious risk of ostracization and even physical harm from others are not worth
it. People are less likely to voluntarily be tested when they will be asked, or even
required by law, to name their sexual partners. This is of particular concern when
there is the possibility of domestic violence [1,26,31]. There are also many other
reasons people do not wish to name their partners. Until recently, very little could
be done for HIV-infected people, and thus informing them of their infection was like
handing them a death sentence. Many health service workers were reluctant to do

this.
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Other specialists in the field have argued that contact tracing is more effective than
screening programs, which often attract mostly the worried well who are not at much
risk [5,18]. It is also argued that the rights of those who have been exposed to know
about their exposure, and the need to stop the chain of infection, should supersede the
rights of the infected to privacy [28]. Many studies have found that contact tracing is
an effective strategy for finding and counseling infected people [14,21,29,31]. Another
argument in favor of contact tracing is that it can “delineate the risk networks hosting
transmission and provide empiric estimates for mathematical model parameters [23].”

With today’s new treatments for HIV infection, some of the earlier arguments
against contact tracing are less valid, since there are more and more reasons to attempt
to identify infected people as early in the course of infection as possible to allow them
to be promptly treated and to reduce the chance that they will unknowingly transmit
the disease to other susceptibles.

While it seems likely that contact tracing could be as effective in controlling the
spread of HIV as it has been for other STDs, there are few analytical studies to
estimate what fraction of the population should be screened, what fraction of their
partners should be contacted in order for the program to have a significant effect on
the spread of the epidemic, or how much the behavior of this tested population needs
to change. Modelers are beginning, however, to develop models which are capable
of studying these questions. Kretzchmar et al. [13] used simulations of the spread
of gonorrhea and chlamydia to study random screening and contact tracing, finding
that, for their model, treatment of even a small fraction of the partners of those
with symptoms could completely halt the epidemic, whereas screening of even large
fractions of the population had little effect. Miiller et al. [20] analytically studied
contact tracing and screening in a stochastic model of a simple SIRS (susceptible-
infected-removed-susceptible) epidemic in a population of fixed size. They derived
formulas for the reproductive number under different assumptions, and, using the
reproductive number from their stochastic model, created a deterministic model with
the same reproductive number. Both of these models neglect “snowballing”, the

situation where not only the partners of the originally screened infecteds, but also



LA-UR-99-5351 — (November 16, 2000) )

the the partners of those partners, and so on, are traced, until no more infected
individuals are found. These models also neglect the situation where a past partner
of an infected individual was infected by someone else either before or after their
partnership.

Here we use a different methodology to develop two models for HIV spread which
includes contact tracing and random screening in populations which do not have a
constant size. We develop the models directly as differential equations, using approx-
imations to estimate terms in our equations, rather than attempting to derive them
from a stochastic or simulation model. Differential equations allow us to quickly ob-
tain insights into the dynamics of the two models. Like Miiller et al. [20], we neglect
snowballing, but we do account for the possibility that partners of infecteds were
infected by someone other than the index case.

These models are extensions of the two models developed in detail in [8,9]. We
have chosen them specifically to address questions about whether or not contact
tracing can be effective given that viral loads vary so much between individuals and
within individuals over the course of their infection. The differential infectivity (DI)
model divides the infected population into groups according to their infectiousness,
and accounts for differences in rates of developing AIDS. In contrast with this model,
we also studied a simple version of a staged-progression (SP) model, in which every
infected individual goes through the same series of stages. This model has a short
early highly infectious stage equivalent to the acute phase of infection, a middle period
of low infectiousness, and a late chronic stage with higher infectiousness. Thus the DI
model captures individual differences and the SP model captures differences in time
within the same individual.

In [8,9] we simulated the transient dynamics and studied the sensitivity of both
models using parameters that we derived from the literature. We also developed a
robust method for initializing multigroup epidemic models. For the SP model, these
studies provided further insight into the observations in [11,12] that when partner
acquisition rates are high the bulk of the infections early in the epidemic are caused

by those in the acute infectious stage. For the DI model, we showed that a small
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number of individuals who are highly infectious during the chronic stage have a dis-
proportionate impact on the epidemic, even though they have a short life expectancy.
Both models were found to be very sensitive to the probability of transmission per
contact and the sexually active removal rate.

In this paper we first review the mathematical formulation of the original DI and
SP models, and then reformulate them to include random screening and contact trac-
ing. We find reproductive numbers for both models, and show that they have a unique
endemic equilibrium which exists if and only if the epidemics are above threshold.
Then we analyze the models to assess the impact of intervention strategies. We use
numerical simulations to compare the impact of the strategies on the epidemic. Ran-
dom screening does slow the epidemic, but not a great deal for either model. For the
DI model, contact tracing is an effective approach to identifying the superspreaders
and has a large effect in slowing the epidemic. However, for the SP model contact
tracing is only slightly more effective than random screening. We use our analytical
formulas for the reproductive numbers and the endemic equilibria to examine in more
detail the sensitivity of both models to the level of intervention strategy. If the SP
model holds, then it would appear that contact tracing will primarily identify indi-
viduals after they are past the infectious stage, and thus public health will not be
served by an expensive contact tracing program. However, if the DI model is closer
to the underlying disease etiology, then the epidemic can be significantly slowed if the

superspreader group can be identified and removed from the transmission network.

2 The DI and SP Models

Here we briefly describe the DI and SP models without random screening or con-
tact tracing and review the analysis for Ry and the endemic equilibrium [8,9]. The

intervention strategies will be added to these basic models in the next section.
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Figure 2.1: The DI model divides the infected population into groups according to their infectious-
ness or differences in rates of developing AIDS. In this model HIV is primarily spread by a small,
highly infectious, group of superspreaders.

2.1 The DI model

During the chronic stage of infection, viral levels differ by many orders of magnitude
between individuals. Those with high viral loads in the chronic phase tend to progress
rapidly to AIDS, while those with low loads tend to progress slowly to AIDS [3,4,22,
30]. The DI model accounts for the distribution of times from infection to AIDS by
assuming variations between individuals in their duration of infection, dividing the

infected population into n groups.



LA-UR-99-5351 — (November 16, 2000) 8

The equations for the DI model illustrated in Fig. 2.1 are:

d

W = (s~ 5) 28,

dl;

E:pzAS_(,u—{_V’L)IZa izla"'an’

Jj=1

:;)\i(t), Ailt) = rﬁimt),

where N(t) = S(t)+ Z I;(t). Here S denotes the susceptibles, I; denotes the number

of infected 1nd1v1duals in group 7, and A denotes the number of infected individuals no
longer transmitting the disease. S° is the constant steady state population maintained
by the inflow and outflow when no virus is present in the population. The total
removal rate y accounts for both natural death in the absence of HIV infection and
people moving in and out of the sexually active susceptible population due to behavior
changes or physical migration. A(¢) is the rate of infection per susceptible, r is the
partner acquisition rate, and ; is the probability of transmission per partner from
infected individuals in group . Upon infection, an individual enters subgroup 7 with
probability p;, where Z p; = 1, and stays in this group until becoming inactive in
transmission. Flnally, 1/Z is the rate at which infected individuals in group ¢ enter
group A, and ¢ is the death rate of people in group A. All infected individuals are

assumed to eventually enter group A prior to death due to their infection.

2.2 The SP model

The viral burden during HIV infection varies as a function of time within an individ-
ual. Initially, the HIV-1 RNA levels in plasma and serum can become extremely high
during the first weeks of acute primary infection, even before there is a detectable
immune response [24,25]. These levels are higher than at any other time during in-
fection. Acute primary infection is followed by a chronic phase during which the HIV

RNA levels drop several orders of magnitude and remain at a nearly constant level
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Figure 2.2: In the SP model every infected individual goes through the same series of stages. This
model can account for a short early highly infectious stage equivalent to the acute phase of infection,
a middle period of low infectiousness, and a late chronic stage with higher infectiousness.

for years [7,22,30]. In the late chronic stages of an infection the HIV-1 RNA levels
may increase as much as ten fold [7] over what they have been during the rest of the
chronic stage. The SP model accounts for the temporal changes in the infectiousness
of an individual by a staged Markov process of n infected stages progressing from the
initial infection to AIDS.

The equations for the SP model illustrated in Fig. 2.2 are:

ds .
- = -S)—A
7 u(S® —8) —AS,
dly
L= 2\S — I
7 =AM =+,
dI; ~
T Yierlica — (i + 1)1 2<i1<m, (2.2)
dA
— = n]n - A’
g = =0
R L)
At) = ;:1 Ai(t),  Ailt) =B N()’

where now [; is the number of infected individuals in each infected stage. Note that
all individuals go into group 1 upon infection. ~; is the rate at which individuals move
from stage 7 of infection to stage i + 1. The meanings of S°, u, r, and § are the same
as in the DI model, and j; is the probability of transmission per partner from infected

individuals in stage i. Previous studies of SP models can be found in [2,10-12,15-17].
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2.3 Transmission Probability

The parameter r enters the model both as a multiplicative factor and through the
dependence of the transmission probabilities per partner, 3;, on the average number
of contacts per partner, ¢, which in turn depends on the number of contacts per
partner (¢ = ¢(r)).

If ¢; is the transmission probability per contact in group ¢, the probability that
a susceptible individual will not be infected by a single contact with an infected
individual is 1 — (;. Hence the probability that a susceptible individual will avoid
infection when they have c(r) contacts with an infected partner is (1 —¢;)°"), and the

probability of transmission per partner from an infected person in group i is
Bi=1—(1-¢). (2.3)

Our choice for ¢(r) = 104r~7 + 1 in Section 5 gives approximately two contacts
per week for people with one partner per year, and decreases to about one contact per
partner as r gets large [9]. The parameter 1 controls how fast this function decreases.
In the simulations presented in Section 5, we set n = 1.

Let 7; be the mean duration of infection in group i. Then, for DI model, 7; =
1/(u+v;), and for the SP model, 7; = 1/(x+ ;). The mean duration of infection for
the whole population for the DI model and SP model are given by 7 = znjl p;T; and

i=
T= Zn: q;T;, respectively. Based on these notations, the mean transmission probability
per é;ltact ¢ for the DI and SP models are

n

o _N~, T oz _N~, T
¢C= p=G _;%7__@- (2.4)

=1
2.4 The Reproductive Number and Endemic Equilibrium

We proved in [8] that both of these models have two equilibria: the infection-free
equilibrium given by (S = S° I, = 0), and the endemic equilibrium given by (S =
S* > 0,1; = I} > 0). The endemic equilibrium is the asymptotic distribution of the

infection in the population once the initial transients have settled down. Analyzing
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the stability of the infection-free equilibrium gives the reproductive number, which
specifies the conditions under which the number of HIV infected individuals will
initially increase or decrease when there are a small number of them at the start.
The reproductive number, Ry is defined such that if Ry < 1 the modeled epidemic
dies out and if Ry > 1 the epidemic spreads for most models [6]. The reproductive
number is obtained by investigating the stability of the infection-free equilibrium
at which the components of infected groups are zero. If Ry < 1, this infection-
free equilibrium is the unique equilibrium. If Ry > 1, the infection-free equilibrium
becomes unstable and there appears, for both models, a unique endemic equilibrium
at which the components of infected groups are positive.

The reproductive number can be written
R() =7rT B (25)

for both models. Here 7 is the mean duration of infection, and 3 is the mean probabil-
ity of transmission per partner. We also found formulas for the endemic equilibrium,
and proved that there exists a nontrivial equilibrium if and only if the reproductive
number Ry is greater than 1. If the endemic equilibrium exists, it is always locally
asymptotically stable. The formulas for all of these quantities are given in Table 2.1.

The relative importance of each infection group in maintaining the chain of trans-
mission is measured by the relative fraction of individuals being infected by each

group. The relative impact of I; on the rate of infection is
M) B
A(t - ’
Q Zlﬁjfj(t)
]:

Note that the formulas for the DI and SP models in Table 2.1 have the same

pi(t) = (2.6)

form, with p; and v; from the DI model being replaced by ¢; and ; for the SP model
formulas. However, while it could be argued that v; and ~; are both progression rates
and thus play similar roles in both models, ¢; is quite different from p;. Not only is
¢; a derivative quantity, but also ¢; = 1 so that the sum of the ¢; is larger than one,
while the p; sum to one. The similarity of formulas can be deceptive in making the

models appear more similar than they are.
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Table 2.1: Reproductive number Ry, mean duration of infection in group 4, 7;, mean duration of
infection for the whole population 7, mean transmission probability 3, equilibrium infection rate
A*, susceptible population S*, equilibrium infected group population I}, equilibrium total infected
population I7, and equilibrium relative impact p; for both models.

Name | DI Model SP Model || Name | DI Model | SP Model
_ _ NSO NSO
R r S*
0 (i r7p A+ A A A*
1 1
7_'1' Iz* pﬁ,S*)\* qﬁZS*)\*
MtV M+ i
i=1 i=1
B n - n - . R() -1 RO 1
B ;piﬁiTi/T 1:21 qBiTi|T A - -
i—1 = =
_ PilBiTi qiBiTi
i undefined T H — ——
jl;[]_ ’7] J p /BT BT

3 Random Screening and Contact Tracing Models

In this section we modify the DI and SP models to account for random sampling and
active identification of infected people. The active contact tracing program is modeled
on the assumption that when someone has been identified as infected by random
sampling this person is asked to identify his/her partners for the past T), years, and
that a fraction f of those past partners are located and tested for HIV infection.
In this initial simple model we neglect the snowball effect where someone identified
through contact tracing names their partners; that is, we neglect any people who
are traced as contacts of contacts. We also assume that all identified infected people
subsequently refrain from engaging in activities that would continue to transmit the
virus.

We assume the rate, o, that someone is identified as infected by random sampling

is homogeneous in the population. Thus we subtract a term ¢; from the equation for
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the infected group, I;, and add it into the equation for a new group, I¢,, the tested
and identified infected people.

The rate that the active contact tracing program identifies infected people is the
sum of two terms: identification by people who were already infected when they had
contact with the identified infected people, and identification by people who were not
infected before they had contact with the identified infected people and subsequently
became infected. We approximate the last group by people who became infected
at the time they were a partner of the identified infected people. We assume that
activity levels are high and that people can only identify their past partners and
provide contact information (such as phone numbers) for the past Ty, years.

We define L; as the average number of infected people with whom an identified
infected person in group I; had contact in the past 73, years and who were already
infected before the contact. Let M; be the average number of people with whom
the identified infected person in group I; had contact in the past 1), years and who
were infected by this identified person. Then L; + M; is the total number of infected
partners per unit of time in the past T), years that an identified infected person in
group I; has, and hence (L; + M;)oI; is the total number of infected partners per unit
of time in the past T); years that all identified infected people in group I; have. If we
neglect migration and death, and suppose that the contact tracing program is only
able to screen a fraction f of their partners, then we subtract fo(L; + M;)I; from the
equation for the infected group I;, and add it to the tested and counseled group I¢;,.

The equations for the DI random screening and contact tracing model illustrated

in Fig. 3.1 are
as

- = 0 __ _
I; |

dl, _ (3.1)
et wle t Ot oL ML, =1,

A0 = SN0 = Y rbiy

1=
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Figure 3.1: The DI model with random screening and contact tracing differs from the original DI

I

n

VnIn VnICn

model in Fig. 2.1 in that it includes a new category of infected individuals, I¢4, who have been
identified as infected and are no longer spreading the virus.

where N(t) = S(t) + I(t), and I(t) = >_ I;(t) does not include the identified infected
i=1
people. Here we leave out the equation for the A group since we assume they are no

longer active and play no role in the transmission dynamics of HIV in the model.

The equations for the SP random screening and contact tracing model illustrated
in Fig. 3.2 are
s

0
—_ = — -
dl;
dl; )
i Yieilion — (vi + o+ 0 + fo(Li + M;))1;, 2<i<n,

i, (3.2)
d;j = —(m+wle, + (o+ fo(Ly + My))1h,

dle,
dt

A = M0 =S raii

=1 =1

=Yl — (vi + )l + (0 + fo(Li + M;)) I, 2<i<n,
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Figure 3.2: The SP model with random screening and contact tracing differs from the original SP
model in Fig. 2.2 in that it includes a new category of infected individuals who have been identified
as infected and are no longer spreading the virus.

where N(t) = S(t) + I(t), and I(t) = > I;(t) does not include the identified infected
i=1
people. We once again leave out the equation for A.
Note that in both models the total number of infected people become the total

number of unidentified infected people based on our assumption: I(t) = >_ I;(t), and
i=1

that the total active population now is N(t) = S(t) + I(t), with I, removed.

3.1 Estimation of L,

Next we estimate the average number of infected partners of the identified infected in-
dividual, L;. The same procedure works for both models. Suppose that at time ¢ a per-
son has been in the population an average of T'(t) years. Let T(t) = min{Ty;, T(t)}.
Then the number of infected partners this individual has had is

Li(t) =r /t e ]{[(2) ds. (3.3)

To calculate this quantity exactly requires the mean time that people were susceptible

before becoming infected, the mean time that infected people have been infected,
and then the evaluation of the integral of I/N over the past. For this preliminary
investigation, we approximate L; by assuming Tj; < T'(t) such that T(t) = Ty
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and that during this period of time, Ty, N(s) and I(s) have stayed approximately
constant at their values of time ¢. Then, we estimate L;(¢) for both models as

L;(t) = 3.4
0 ="5 (3.4)
Note that L;(t) is independent of i. This approximation greatly simplifies the models

and is adequate for the qualitative analysis of the models.

3.2 Estimation of M;(t)

The procedure for estimating the average number of partners infected by the identified
infected individual, M;, is different for the DI and SP models.

3.2.1 M;(t) for the DI Model

Let T;(t) be the mean time that an infected person in group I; has been in that
group. It can be approximated as 7, = 1/(p + v;), which, because we are dealing
with constant rate flows, is both the mean time that people stay in group ¢ as well
as the mean time that people in group ¢ have been in group ¢ when the population is
at equilibrium. Let T;(t) = min{Ty, T;(t)}. Then the average number of people that
this infected person has infected is
bS(s)
Milt) =rbi /t—Ti(t) N(s)

As above, if we make the simplifying assumption that S and N have been constant

ds.

at their values of time ¢ for the length of time Ti(t), then for the DI model,

where T; = min{Ty, 7 }.

3.2.2 M;(t) for the SP Model

If we continue to approximate the populations by their time ¢ values, then the mean

time a person who is in group I; has been in that group, 7;, is approximately 7; =

1/ (ke + 7i)-
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For people in group I;, the number of people a person has infected is

e

where T} = min{7Ty,, 71 }. Because we are assuming that people can identify a fraction
of their partners for the past Ty, years we can convert this time for people in the
infected group I; to the index J(i) of the earliest infected group that an infected
person in I; was in when they may have infected another person, where ¢+ > 1 and
J(i) <. That is, a person in I; can identify past partners while they were in groups
I; where j € [J(i),i]. For example, if ¢ is 2 and J(2) = 1, people in group 2 can
identify partners from the time when they were in group I;, but they cannot identify
partners from the times prior to infection.

Define T} ;. to be the average length of time period that people in group I
have been infected, and 7}’ to be the average length of time period that those people
entering group I, have been infected. Because these people have survived to the
kth group and are still in the active population, we do not include the removal rate

() when estimating 7. That is

k=1
Tyjing = Tk + Z -
=1

The index J(¢) is determined by T and T;;,s. That is, J(¢) is the index of the
group for which
Liing — Tiy < T < Tiing — Tay—1,

or more specifically

There are three possible cases.
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Case 1. J(i) =i and Ty < 7.
In this case, the average infected person arrived in their current infected group so
long ago that they cannot identify partners they had while they were in a previous

group. For this case we use the estimate

~ Ty BiS(t)

M;(t) = ND (3.7)

Case 2. 1< J(i) <.

In this case T} is longer than the time people have been in group I;, but shorter
than the time they have been infected. The average time they have been in group I;
is 7;, in group 7 — 1 is 1/7;_1, and so on until in group I;(;, where they only recall
partners for the amount of time

i—1

1
tMJ(i) :TM—7_'Z— Z .
k=J()+1 ¥
Hence
rS(t) . — B _
Mz<t) ~ N(t) BJ(Z)tMJ(i) + Z — + /BiTi . (38)
k=d(@)+1 'k

Case 3. J(i) = 0.
In this case, T}y, is longer than the time the infected people have been infected.
The identified infected individuals can identify all of the partners since they have

been infected. As a result

4  The Reproductive number and Endemic equi-
librium

The results for both the reproductive number and the endemic equilibrium for the DI

model and the SP model are summarized here. The details can be found in Appendix
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A. In the numerical results section we will use these results to examine the behavior

and sensitivity of our two models.

4.1 The Reproductive Number

The reproductive number for the DI model is given by

. PiBi
RD =p —. 4.1
0 ;,u—i-yi—i—a—!-farTiﬁi (41)

The reproductive number for the SP model is given by

n
qi i
RY=r , 4.2
0 ;,u—!—%—i-o—!-faMio (42)

where we define

i—1

Yy
G = 5 4.3
e Hu—i—vj—i—a—i—faM]Q (43)

and M) is M; evaluated at the infection-free equilibrium.

Note that in order to numerically determine the reproductive number for the SP
model we need to first determine M. Recall that there are three different possible
cases for these M;, so we need to be careful when we evaluate them that we use the
appropriate formula for the ith group. In the appendix, we explicitly give Rj and ¢;
for some specific cases of M;.

The partial derivatives of the reproductive numbers with respect to the rate of
random screening, o, and the fraction of identified partners contact traced, f, are

given by

33(])3:_T2n: pii 1+ frTB;
do i+ v+ L+ friiB)e \u+vi+ Q1+ friif)o )’

S n .B; ! 14 fM?
BRO :_TZ i s : Z f J > ;
do p+vi+ 1+ fM)o A+ + 1+ fM7)o

i=1 j=1

(4.4)
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and

8EEO :_TZ pzﬁz TTﬁz
of —p+vi+ 1+ frig)e \p+vi+ 1+ fri;B)e )

ORy _ 3 qi i ! Mo

All these derivatives are negative. Hence, both a pure random screening program

(4.5)

(with f = 0) and any contact tracing program will reduce the reproductive number
of the epidemic, and thus most likely reduce the severity of the epidemic. The more
people are screened (the greater o is) and the more partners people can recall or more
accurate information people give (the greater f is), the more Ry will be reduced for
both models. A large enough screening rate and partner recall will reduce R, below
the threshold.

Notice that contact tracing has different impact on the reproductive number and
hence on the transmission dynamics for the DI and SP models. Contact tracing can
reduce Ry in a clear way for the DI model. However, the contact tracing for the SP
model depends on not only the time period that identified infected people can identify
their partners back to but also how long they have been infected, which determines

how many infected partners they have had.

4.2 The Endemic Equilibrium

For the DI Model, the endemic equilibrium is given by
pG(2)
pG(z) + F(z) — 1

ppi(F (%) — 1) 0
S®, 4.7
(5 b (uG(@) + F@) — 1) 4D

S* = S0, (4.6)

I =

where

G(2) ;zzn: B NI

i1 ai—i—bii’ i1 a,-—i—bii’
and Z is the (unique) root of the equation Hp(z) = 1. Here Hp(z) is defined by
Hp(z)=r afipi , (4.8)

i1 — + b
x
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with
a;=p+vi+o+rfolTy, b= for(T,fi—Tu).

For the SP model, the endemic equilibrium is given by

0
Q'Ql(AﬁBﬂ) .
1=17= ~,
Aj + B;
1/z -1 +]£[1( i+ BiE)
=1] +Ba)L, i=1-,n-1, (4.10)
j=i+1
> I_I+1 (4; + B;t)
1=17=
S /& -1 v 1

where 7 is the unique root of the algebraic equation

Hs(x) = rwi Ak 1, (4.12)

i

=t [1(4; + Bjx)
j=1

Ai=(vi+p+o+ forTay)/viea, Bi= for(Ju, — Tm)/Vi-1,

with 79 = 1 and Jy, determined from equations (3.7),(3.8), and (3.9), that is

( B:Tr, if J(i) =i and Ty < 7,
= Gk
Ju; = 3 | o T (4.13)
1—1 ﬁk B . ]
Z —+BZ’TZ', if J(Z) = 0.
\ k=1 Vk

The details can be found in Appendix A.

5 Numerical Investigation of the Models

Tables 5.1 and 5.2 gives the parameter values we use for the basic DI and SP models.
We estimated these parameters in [8,9] from the published literature. Here we use

the baseline parameters given in [9], which ensure that the two models have the same
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Table 5.1: These parameters were chosen based on the studies and calculations cited in the text.

Basic Parameter Formula Value

Sexually active removal rate o 0.05 yrs !

Natural death rate d 0.02 yrs~!

Mean duration of infection

(when o = 0 in the DI model) T 12 years

Partner acquisition rate r 5 partners/yr
Contacts per partner parameter n 1.0

Initial population size N(0) S

Initial infected population Ir(0) 0.015°

Normalized infection-free equilibrium S0 1

DI parameters

Distribution of the newly infected ) (0.05, 0.33, 0.5, 0.12)
Progression rates by group v (0.19, 0.096, 0.058, 0.028)yrs !
Relative per contact transmission ¢ (10%,102,10,1)2P
Infectivity adjustment factor 2P 5.1 x107°

SP parameters:

Progression rates by group ~ (13.0,0.23553,0.23553, 0.47)yrs ™
Relative per contact transmission ¢ (100,1,1,10)z°
Infectivity adjustment factor 25 9.08 x107*
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Table 5.2: Derived Parameters: These parameters are derived from the parameters given in Table
5.1.

Description Formula Baseline Value
Duration of Infection T 7.3 yrs

Mean probability of transmission

per contact ¢ 0.003

Number of contacts per partner c(r =15) 21.8 contacts per partner

DI parameters
Probability of transmission per

partner B (0.68, 0.105, 0.011, 0.0011)
Mean probability of transmission

per partner B 0.053
Reproductive number Ry 1.93

SP parameters:
Probability of transmission per con-

tact B (0.87, 0.0196, 0.0196, 0.1802)
Mean probability of transmission

0.051
Reproductive number Ry 1.88

=i

per contact

value of 7, nearly identical values for Ry, and 3, and thus nearly identical endemic
states, since the sensitivity of the models to the intervention programs can be better
compared if these values are the same in the absence of any intervention program
(0 =0).

Because we are considering a high risk population, we assume that individuals
realize they are at risk and are more likely to come in for testing than in the general
population. We use a 5% average screening rate per year (¢ = 0.05) in our numerical
simulations, and study the sensitivity of the model to screening rates between 0 and
20%. For the contact tracing program for an active population with an average of
5 partners a year we take Th; = 2 years and study the sensitivity of the model
to variations between 0 and 4 years. In active populations, the fraction of partners

named, located, and screened varies widely. Some programs seem to have no difficulty
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locating partners, but find a great reluctance to be tested, while other programs have
more difficulty locating partners, and less difficulty getting them to be tested [18]. We
also include in our factor f an estimated 10% of the infected people who are located
and tested, but do not change behaviors. For most simulations we assume that half
of all named partners will be tested and change behaviors, (f = 0.5), and study the
sensitivity of the models to variations in f. Some studies cited in [18] seem to have
done better than this, and some have done worse, but in none of these studies is there
a way to evaluate the fraction of partners that individuals were able to identify.

Estimates of the mean probability per contact, ¢, range from 0.0003 (lowest value
estimated for female-to-male transmission) to 0.08 (highest value estimated for male-
to-male transmission) [27]. Here we use ¢ = 0.003 at baseline.

In this section, we first use numerical simulations of the time-varying dynamics
to investigate the effectiveness of these simple random screening and contact tracing
programs for three levels of interventions: none, random screening only, and random
screening plus contact tracing. Next, we use the analytical formulas for Ry to ana-
lyze the sensitivity of the early epidemic to different levels of intervention programs,
varying o, f, and Th;. We then examine the sensitivity of the long-term epidemic to
these three parameters. Finally, we investigate the impact of our approximations for
the SP contact tracing model on the smoothness of Ry and the endemic equilibrium.

The impact of these interventions on the DI and SP epidemics shows how the
effectiveness of the intervention strategy depends on the underlying etiology of the
disease transmission. These simulations confirm that contact tracing is more effective
when there are core groups which are transmitting the majority of the infections (as
in the DI model) than when most of the infections are spread by those who have just
been infected (as in the SP model). In particular, we illustrate that contact tracing is
an effective approach to identifying the superspreaders in the DI model. We conclude
that if the impact of the intervention program depends on the underlying etiology of
the infection, this etiology must be understood in order to design the cost-effective
intervention programs.

The timing of a multigroup model epidemic is extremely sensitive to the initial
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distribution of the infected population. We defined the initial distribution of the 1%
infected population using the Numerical Preinitialization Procedure described in [9].
This distribution is defined to simulate the behavior of a naturally occurring epidemic,
and to minimize the initial transients created by artificial initial conditions. First
a tiny fraction (0.01%) of the population is distributed among the infected groups
based on the relative fraction of time an individual is in a particular group. That
is, the I; is initialized with 0.00015°7;/7, where 7; is the duration of infection of
infected individuals in group 7. The model is then run forward in time until 1% of
the population has become infected. At that time, the population is renormalized
to equal S° and the time is renormalized for this point to be ¢t = 0. The I;(0) are
given the same relative distribution as they had when the simulation is stopped, and
their sum is set to 0.01S°. This approach is an approximation of the natural initial
conditions that would occur if a very small number of infected people were initially

introduced into the population.

5.1 Transient Dynamics of the Models

The impact of random screening and contact tracing on the transient dynamics can
be seen in Figure 5.1. In the first simulation (solid lines), there is no intervention, and
all parameters are at the baseline values in Table 5.1. In the second simulation (dash—
dot lines), there is screening of 5% of the active population and no contact-tracing.
In the third simulation (dash lines), contact tracing is added to the 5% screening

program, with 73, = 2 and f = 0.5.

In the DI model there is a small, not insignificant, impact from screening alone.
However, a modest amount of contact tracing added to this screening program leads to
a large reduction in the epidemic. The lower plots show the relative impact, p;, defined
as the fraction of infections caused by group 7. In the DI model, with just a modest
amount of screening and contact tracing, members of the most infectious groups are
quickly identified and removed from the infectious population. Surprisingly, in the

DI model contact tracing has only a slight shift in the relative impact of the different
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Figure 5.1: The solid lines plot the epidemic when there is no screening or contact tracing, the
dash-dot lines are when 5% of the population is screened, and there is no contact tracing, and the
dashed lines show what happens when contact tracing is added to the the random screening model
with Th; = 2 years and f = 0.5. The upper figures show the overall model dynamics for these three
cases for each of the two models. In the upper left hand figure we see that random screening has a
modest impact in slowing the DI model epidemic when compared to the dramatic impact of contact
tracing. On the upper right we see that random screening alone has slightly more impact on the SP
model than the DI model. However, random screening plus contact tracing has less impact on the
SP model epidemic. The lower two figures show the relative impact, p;, (see Equation 2.6), for each
of the two models, for the baseline and contact tracing cases. We see that contact tracing changes
the relative importance of the most infectious groups more in the SP model than in the DI model.
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groups on spreading the epidemic even though there is a huge reduction in the infected
population.

The 5% random screening program has slight more impact on the SP model than
on the DI model. In simulations (not shown here) we found that screening 10% of
the population in the SP model has almost the same effect as 5% screening with
contact tracing. The relative impact plots illustrate that the contact tracing changes
the underlying dynamics of the SP epidemic. With no intervention program, the one
third of infections early in the epidemic are caused by group 1, and most of infections
late in the epidemic by group 4. Contact tracing identifies people before they enter
group 4 and therefore with contact tracing, group 1 has more relative impact on the
epidemic throughout the epidemic.

The group causing the most infections can impact which control methods will work
best. Because in the SP model people stay in group 1 for such a short time, they
are hard to detect. However, by the time they reach group 4, there is a reasonable
chance that they know about their infection. This implies that contact tracing used
in conjunction with an early identification program, such as a concerted effort to
screen people who have early symptoms of infection may be an effective intervention

program for an SP epidemic.

5.2 Sensitivity of R,

In Section 4, we determined that R, decreases for both models as either ¢ or f
decreases. Thus the more screening or partner contact tracing there is, the slower the
initial epidemic will grow. To measure the sensitivity of the initial epidemic to the
intervention programs, we evaluate Ry using the baseline parameters given in Table
5.1, and varying the random screening rate, o, the fraction of partners traced, f,
and the time window for remembering past partners, 7,. These results are shown in
Figure 5.2. The upper figures show Ry as a function of ¢ for 5 values of Ty, (0,1,2,3,4
years), and f = 0.5. The lower figures show Ry as a function of f for 5 values of o,

(0.0, 0.05, 0.1, 0.15, 0.2), and Ty = 2 years.
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Figure 5.2: In the top figures, Ry is plotted as a function of the fraction of the population that
is randomly screened for infection. The different curves illustrate how much greater the impact of
contact tracing (f = 0.5) is for the DI model than the SP model for Ty = 0,1,2,3,4. To illustrate
the sensitivity of the models to f in the lower figures, we fix Ty = 2 years and plot Ry as a function
of the fraction of partners traced, f. The multiple curves illustrate the impact when the fraction of
the population randomly screened is varied, ¢ = 0, 0.05, 0.1, 0.15, 0.2. Ry is reduced more in the
DI model than in the SP model as the fraction of partners traced increases.
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These figures show that Ry is more sensitive to changes in ¢ than to variations in
either f or T); over their range. As random screening increases, Ry for the DI model
decreases much more rapidly than Ry for the SP model for the same level of contact
tracing. The upper plots show that the SP model is much less sensitive to T, than
the DI model. For the DI model, at a 10% screening rate, Ry rapidly drops as Ty
increases crossing threshold conditions (Ry = 1) before Tj; = 2 years, and decreasing
less rapidly as T}, increases for the DI model. Thus, if identified infected people can
identify their partners for just one year, and half of their partners can be traced,
then the DI model goes below threshold when 12.5% of at risk people are randomly
tested. Furthermore, if the identified infected people can identify their partners for
the past four years, only 6.5% of the population needs to be randomly tested in order
to bring the DI epidemic below the threshold. However, the epidemic is always above
the threshold for the SP model for these conditions.

The lower graphs show that Ry is less sensitive to the fraction of partners traced
than to the random screening rate, but is still more sensitive in the DI than in the
SP model. Note that Ry drops below threshold on the 10% random screening curve
at f slightly less than 0.5, so that if half of the past partners are traced and 10%
population randomly screened, the epidemic is below threshold for the DI model,
while Ry > 1.4 with the same parameters for the SP model.

Finally, we remark that additional studies have shown that in the SP model, R,
remains in the range [1.5, 1.9]) for ¢ = 0.05, f € (0,1), and T); € (0,4). In the DI
model, Ry decreases more rapidly, falling quickly at small values of f and 7T, and

drops below threshold at larger values of f and T},.

5.3 Sensitivity of the Endemic Equilibrium

We show in Appendix A that when Ry > 1 there exists a unique endemic equilib-
rium for both models. We solve for the endemic equilibrium by numerically finding
the roots of the algebraic equilibrium equations defined in Section 4. This is easily
accomplished because Z in (4.8) and (4.12) is an increasing function of o, f, and T}y.

However, the dependence of the endemic equilibrium on o, f, and Tj; is complex
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Figure 5.3: To examine the sensitivity of the endemic equilibria, we plot the total infected popu-
lation of the DI and SP models at the endemic equilibrium as we vary the fraction of the population
randomly screened (o) for 4 values of T, and f = 0.5, and the fraction of the population traced (f)
for 3-4 values of o and Ty = 2 years. Notice that in all of these sensitivity studies, contact tracing
has a more impact on the endemic equilibrium for the DI model.
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because changes in o, f, or T), affect not only the endemic equilibrium I} given in
(4.7) or in (4.9) and (4.10), as functions of & but also the values of a; and b; for the
DI model, or the values of A; and B; for the SP model. Because of these complex in-
terrelationships, we investigate the sensitivity of the endemic equilibrium numerically
and illustrate our results in Figure 5.3.

In Figure 5.3 we see that [* is a decreasing function of all three parameters in
the models. Whenever R, crosses the threshold values R, = 1, the total number
of infected people at the endemic equilibrium vanishes and the lines on the graph
intersect the x-axis. As in our studies of Ry, we find that the contact tracing program
has more impact on the DI model epidemic than the SP model epidemic. For example,
when f = 0.5 and Ty; = 1,2,3 years, there is a more rapid decrease of I* in the DI
model than in the SP model. Surprisingly, if there is no contact tracing, (Tj; = 0),
then screening alone has a bigger impact at slowing the epidemic in the SP model
than in the ID model. As T), is increased, the critical value of ¢ for stopping the
epidemic decreases almost twice for the DI model than for the SP model. There is a
similar response to increasing f and o, at fixed Ty,. If the screening rate is small and
the DI model holds, a good contact tracing program can bring the epidemic under

control.

5.4 Impact of the Discrete Approximations in the SP Model

In developing the contact tracing SP model we estimated how far back people can
recall their partners. We made the approximation that the mean time an individual
has been in a group can be approximated by the mean time an individual stays in
a group, 7; = 1/(u + ;). We also assumed that we can use the mean time people
stayed in previous groups to estimate how many past groups a person in group ¢ can
recall their partners from. The first of these approximations ignores variability in
population sizes over time and is exact when the population is at equilibrium. The
second assumption about how to compute averages leads to a possible discontinuity

in the SP model as the parameter Ty, changes and the index J(i) jumps.
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Figure 5.4: To examine the impact of the discontinuity in the parameter T, that are introduced
into the SP model by the model approximations and the structure of the SP model, we plotted Rg
and the total number of infecteds at equilibrium as a function of Ty, for different values of 0. We see
that in fact these quantities are continuous in Tys. There is a discontinuity in their slope at about
Ty = 3.3 years, but the changes are fairly small.

In Figure 5.4, we investigate the nature of these jumps and show that they are
small and lead to kinks, but not to discontinuities, in Ry and the endemic equilibrium.
Both plots exhibit a rapid drop at about T, = 3.3 years, but this shift is short-lived,
due to the discontinuous change in slope.

Because of our approximations, as Ty, passes critical values, the index J(7) changes
discretely from group to group. This causes the slope in Ry and [* to jump as a
function of T, at a value of T); between 2 and 3 years. The effect of this jump can
also be seen in Figure 5.2 as a rapid change in Ry in the top right SP model graph.
Note that the Thy = 2 and 3 years lines are much closer together than the T, =1

and 2 lines are or the T3, = 3 and 4 lines are.

6 Summary and Conclusions

We have investigated how mathematical models can help predict the effectiveness of
control measures on the spread of HIV and other sexually transmitted diseases. We

studied the impact of random screening and contact tracing within the context of
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two HIV transmission models. In the DI model the infected population is divided
into groups according to their infectiousness, and HIV is primarily spread by a small
highly infectious group of superspreaders. Random screening alone reduces the im-
pact of the epidemic a small amount for this model, while contact tracing slows the
epidemic significantly by identifying the superspreaders. In the SP model an infected
individual goes through a series of infection stages and the virus is primarily spread
by individuals in an initial highly infectious stage or in the late stages of the infec-
tion. In the SP model, we find that contact tracing is only slightly more effective
than random screening, because it cannot identify very many of the people in the
very short, initial, most infectious period. Thus the effectiveness of the intervention
strategy strongly depends on the underlying etiology of the disease transmission.

While the term that accounts for random screening is easy to add to a mathe-
matical model of disease transmission, it is not obvious how to account for contact
tracing. At first glance it would appear that, since contact tracing involves identify-
ing events that occurred in the past, a model that includes it would contain nested
integrals over the past. These integrals would be analytically intractable. In order to
properly study contact tracing, it thus might appear that one would have to abandon
continuous differential equation models in favor of individual agent-based models.
However, individual agent-based models would be highly nonlinear, and thus could
only be studied using large numbers of simulations at any given set of parameter val-
ues. Rather than doing this, we derived a differential equation model directly from
the physics of the situation, by coming up with several simplifying, but reasonable,
assumptions which allow us to add contact-tracing terms to our previous differential
equation models. These terms have the advantage that we are able to determine
analytical formulas for the reproductive number and endemic equilibrium, and use
those formulas to quickly study how effective contact tracing would be as part of an
intervention program.

Using our results on the reproductive number and endemic equilibrium, we an-
alyzed the impact of various levels of intervention programs on the early epidemic

and the endemic equilibrium. We also simulated numerically the time evolution of
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several scenarios, and examined the effectiveness of contact tracing in identifying the
most infectious group transmitting the infection. These studies led us to the following

conclusions:

e Random screening and contact tracing can be included in simple STD differen-

tial equation transmission models.

e Contact tracing is most effective when there are core groups of individuals
remaining in for long periods of time that are transmitting the majority of the

infections (as in the DI model).

e Contact tracing is only slightly more effective than random screening when a
large fraction of the infections are transmitted by individuals in a short, highly

infectious early stage within the disease progression (as in the SP model).

e When using models to guide intervention strategies, the underlying eitiology of
the disease transmission must be captured by the model before it can be used

to estimate the impact of the intervention on the epidemic.

We have described how mathematical models based on the transmission mecha-
nisms of HIV can help the scientific community evaluate the potential effectiveness
of different approaches for bringing an epidemic under control. It would be possible
for public health officials or economists to add dollar amounts to various levels of
screening and contact tracing in a particular population, and estimate the cost of
reducing the epidemic to certain levels using these two models. However, we caution
that the real epidemic is more complex that the models we have studied here, in part
because of the complexities of sexual partner selection.

Although we have separated the DI and SP mechanisms in order to understand
each of their roles, it appears from the data that HIV infected people both go through
stages and have different individual levels of virus during the chronic infection stage.
The real model should be a combined DI and SP model, which we will study in a
future paper. Thus these insights are just one step in improving our understanding of

the essential relationships between the social and biological mechanisms that influence
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the spread of the disease and can help set priorities in research, saving time, resources,

and lives.
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A Appendix

We derive explicit formulas for Ry for the contact tracing DI (3.1) and SP (3.2) models,
show the existence of the unique endemic equilibrium, and reduce the formulas for

the endemic equilibria to a single equation for each model.

A.1 The Reproductive Number

We define the reproductive number Ry such that the infection-free equilibrium is

asymptotically stable if Ry < 1 and is unstable if Ry > 1.
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A.1.1 R, for the DI Model

The Jacobian of the contact tracing DI model (3.1) at the infection-free equilibrium

can be written in the form

-0
0 Jpr 0|, (A1)
0 D,
where
D, =diag(—(p+v1), -+, —(u+ 1)),
and
prbi—=6  prfa - pirBa
g | P =g s | (A2)
a1 Pt B2 oo parBn — 0y

with & = p+vi + 0 + foM?. Here M? = r1;5 is M; in (3.5) evaluated at the
infection-free equilibrium. Because all of the entries of the diagonal submatrix D; are
negative, the stability of (A.1) is determined by Jp;.

Using the same approach as in [8] to analyze the matrix Jp;, it is a straightforward
calculation to obtain the reproductive number

& i Bi = Dibi
RP =7 Pili r _ A3
° ; 0; i_zlu—i-z/i-l—a-l—farTiﬂi (A-3)

for the DI model.

A.1.2 R, for the SP Model
The Jacobian at the infection-free equilibrium for the contact tracing SP model (3.2)

can also be written in the form

_M - 0
0 Jsr 0 |, (A.4)
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where

Dy, = dlag (-(,U + 71)’ o ,—(,LL + /Yn)) )

and

rBi—01 By Th3 - B Ty

Y1 —52 0 s 0 0
JSP = 0 ")/2 _63 A 0 O 3 <A5)
0 0 0 - Y1 —0n

with 0; = pu+ v + 0 + foM? and M? being M; for the SP model evaluated at
the infection-free equilibrium. Again, the stability of (A.4) is determined by that of
matrix Jsp in (A.5).

Using a similar approach as in the derivation of Ry for the SP model in [8] we can

express the reproductive number for (3.2) as

RS =r zn: 5:5% _ i 4B (A.6)
i=1 "

p+yi+o+ foM

i=1
where
i1 v
G = J . A7
? ]1:[1/1+’}/j+0'+f0'M]Q (A7)

Note that M? depends on how far back people can identify their partners. If Ty,
is small and a typical infected person can only identify partners from their current
infection stage (J(z) =) and Ty < 1/(p + ), then M? = rTy53; and

n
4 Bi
RS =r ,
0 Z:ZIM+’YZ+O'+fO'T‘TMﬁz

where
i1 v
. V= J .
@ H,u+7j~|-a+farTMﬁj

j=1
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At the other extreme if T}, is large and a typical infected person can identify all

i—1
M) =r 2@4— b :
Tk Bt

s _ N 45
RO_TZ i—1 N\’
=L+ +o+ for (Zf—:%—%)
k=1

their partners, then

and

where
i—1

4 =H RE .
)

i1
= . Br Bi
=L+ + o0+ for (gf%—uﬂi

k

A.2 The Endemic Equilibrium

We now show that when Ry > 1 both the models have a unique nonzero endemic
equilibrium and derive a single equation for the equilibrium of each model that can

be easily solved numerically.

A.2.1 The Endemic Equilibrium for the DI Model

We now show there exists a unique endemic equilibrium when the infection-free equi-

librium is unstable (Ry > 1). The endemic equilibrium for (3.1) satisfies the equation:
PiAS" =(p+vi + 0+ fo(L; + My))I}

Tul*  rTi6iS"
:(M+U¢+a+fa(rji\;{k + 1 ]5*8 ))Il*

. i (A.8)
= (,u+Vi 4o+ fo <rTM (1 — S—) +Tﬂﬁi%)> I7

N*
S*
= : bz— I'*,
(o) 5

where a; = u+v; +o+rfoly, b; = for(j}ﬁi — Ty). Hence,

iAS™
o P
i+ bi—
a; + N
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which gives

i=1 N* N
ZN*

Vo 7‘2”: Bili _ Ti fpi\'S
=1 (ai +b 5 )

That is:

(A.9)

zlzb
a—I—N

The fraction of the population that is susceptible at the equilibrium as z :=

S*/N* € (0,1) is used as a variable to define the function

Bipi
- A.10
§_+b (.10

where Hp(x) = 0 at the equilibrium. Because Hp(z) is an increasing function,
glcgr%)HD(x) = —1, and

lim Hp(a j=ry Bipi :Tzn: Bipi R,

i=1 a; +b; — utvit+o+ forTif;

there exists a unique solution of Hp(z) = 0 for & € (0,1), if and only if Ry > 1.
Combining the equilibrium equation for (3.1), u(S° — S*) = A\*S*, and (A.8) we

have
=L s0— 5. (A.11)
! a; + bz.f
Hence,
. - pi .
IF = p(s® — s~ = u(S° — S*)G(%),
So1r = (s =530 L = - 57
where G(2) := i b
i=1 a; + bi
Define the function F(&) :=r)_ iz_pg of the equilibrium solution # and note
i=1 Qi i

that N* = S*F(2). Therefore,

S* + (S — SG(2) = S*F (%), (A.12)
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or

S* = SO (A.13)

pG(z) + F(z) -1
From (A.12) it also follows that

p(S— 87 =L g (A.14)

Substituting (A.14) into (A.11) gives

. _ Pi(F(E) 1) pi (F(&) — 1) .
w= (a¢+b¢x)G(i")S " (a; + b:id)(uG(2) + F(&) — 1)5 : (A.15)

Because F(2) =1/ > 1 and (A.12) we can conclude that S* > 0 and I} > 0.

A.2.2 The Endemic Equilibrium for the SP Model

The equilibrium equations for the SP model (3.2),
AS" =(11 + o+ 0+ oL+ M)}
Yielliy =(vi+ pt o+ fo(li+ My))I7,  2<i<n,

can be combined to give the conditions

S*
A\S* = <A1+B1m) 7, (A.16)
and
]i1:(A +BN>I i1=1,---,n—1 (A.17)
That is,
I*zﬁ(A +BS*>I* i=1,---,n—1 (A.18)
(3 N ) 3 7

j=itl
where A; = (v + p+ o + forTy)/vi—1, Bi = for(Ju, — Tau)/7vi-1, With 79 = 1 and
Jy, are given by (4.13)

Substituting A and (A.18) into (A.16) then leads to

(Zﬁz I1 (A +BJ§*>> = i <Aj+Bj%>. (A.19)

=1 J=i+1
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Defining x := S*/N* and dividing (A.19) by the right hand side, we obtain

= rmZ Z —1=0. (A.20)
H (A; + Bjx)
The two end limits are lir% Hg(z) = —1 and
T
lim Hs(z Z 2 —1=Ry—1.
z—1 = H( )

Therefore, if Ry > 1, there exists a solution # € (0,1) of (A.20) and the solution is
unique if the derivative of Hg(z) is positive.

The derivative of Hg(x) is given by

Hg(x) =r Z R fﬂz i Z < A, _|_JBJ.$

i T A;+ Bjx A;+ Bjx
Me+80 = G+ B - o
- Bi d Bjx
:TZ U 1= A;j+ Bz |~
=t [1(4; + Bjx) g=t ot
=1

It follows from (3.6)-(3.9) that Jy;, < T for all three cases of J(¢). Then, B; < 0 for
all j, and A;+ B,z > 0for z € (0,1). Hence Hi(x) > 0, which ensures the uniqueness
of the endemic equilibrium.

To solve for I*, note that substituting # into (A.18) yields

=] 4+Ba)L, i=1-,n-1 (A.22)

(2
j=i+1

It follows from S* = xN* = z(S* + > I*) that

=1

Srox 01 4+ i)

—i I (A.23)

S = Eo1T 1/7 -1 "
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Combining the equilibrium equation (3.2) for S with (A.16) and (A.22) yields

p(S° = S*) = AS* = (A + Bia)I; = [ [ (4; + B;a) I

7=1
which when combined with (A.23) gives
Zl _111 (45 + Bjz)
0= | p=—= Aj+ B;z) | I
pwS H 17 -1 +]1:[1( j+Bjz) | I
Solving this equation for I} gives
0
Ii=— S (A.24)
> I 4+B7
i=1j=3 ~
A; + B;
H 1/7 -1 +jl;[1< i+ B;T)

and substituting this into (A.18) and (A.23) then completely solves for S* and I,

i=1,---,m.



